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ABSTRACT
Here we report on the development of software agents with
human-like performance characteristics for use in simulations
of new airspace concepts. The goal of our effort is to use the
agents to evaluate the impact of new technologies, such as
widespread automation, on the workload and situation
awareness of air traffic controllers. Our approach combines a
task analysis, which provides a functional description of the
domain, with a human performance architecture, from which
detailed performance predictions can be made. We are in the
preliminary stage of agent development. Here we will focus on
how a standard task analysis can be paired with a human
performance model to generate behavior that approximates
that of the human user. We will also discuss the simulation
environment and our progress to date.
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1. INTRODUCTION
Here we report on the development of software agents with
human-like performance characteristics for use in simulations
of new airspace concepts. The term “software agent” is used
rather then “cognitive agent” since one application of our
agents will be to replace some of the human participants in
large-scale human-in-the-loop simulations, and it is useful to
distinguish artificial from human cognitive agents.
Developing agents for real-time simulations is only one goal.
The specific goal of interest here is the development of agents
that provide insight into the effects of new technology on air
traffic controllers. More generally we are exploring the use of
software agents to evaluate a human-system interaction in a
range of domains. The success of efforts such as TAC-AIR Soar
[12] has demonstrated the potential of using software agents
as replacements for humans in simulations. Our approach
departs from that of TAC-AIR Soar, and autonomous agent

work in general, by integrating a model of the task with a
model of the human resource architecture at the level of
cognitive, perceptual, and motor (CPM) operators. The
mapping of CPM operators to task actions is governed in part
by theory, and in part by experimental observation. The
inclusion of a fixed processing architecture at this level of
detail allows our agents to capture important characteristics of
human performance that remain fixed across tasks and
domains. The method we describe is being applied to simulate
the performance of a human operator for the purpose of
evaluating the efficacy of human-system designs. In particular,
the human-system designs of most interest concern human
interacting with intelligent agents, both human and artificial,
in systems with distributed authority. Thus, though our
approach may differ from that generally taken in developing
autonomous agents, our interest in the effectiveness of human-
agent interaction puts us squarely within the interest profile of
this workshop.

In developing human-like agents we combine a functional
analysis of the task domain with a computational theory of
human performance. The task analysis consists of a
hierarchical task decomposition based on the Goal, Operators,
Methods, and Selection (GOMS) technique [4]. The resource
architecture currently implemented is based on CPM-GOMS.
CPM-GOMS is a modeling method that combines a
hierarchical task decomposition with a resource architecture.
Tasks are decomposed in a nested set of Goals, Operators
applied to transition between goal states, Methods consisting
of set of operators commonly applied to achieve a goal, and
Selection rules that choose between methods. The GOMS
analysis terminates in low-level Cognitive, Perceptual, and
Motor operators. CPM-GOMS models have made accurate,
zero-parameter predictions about skilled user behavior in
routine tasks [10]. We have recently described an approach for
automatically generating CPM-GOMS analyses using the Apex
computational architecture [11]. In this approach, the top-level
goal is decomposed into subgoals down to the level of
“templates”. Templates describe elementary actions in the task
domain (e.g. move-and-click a mouse, type a key). A template
is a theory that describes how the underlying cognitive,
perceptual, and motor operators combine to accomplish this
short elementary task. Apex composes long behavioral
sequences by interweaving the templates for successive
templates. Many templates are common across tasks, allowing
reuse of existing models and code. Composing behavioral
sequences in this way from templates that describe
fundamental task actions allows the model to easily simulate
the overlapping of tasks characteristic of skilled human
performance.



The automation of CPM-GOMS in Apex makes it practical for
the first time to derive detailed predictions of human
performance with complex tasks and interfaces. We have
focused initially on evaluating routine human-system
interaction by predicting the time and resource demands of
accomplishing common interface tasks. Capturing resource
demands is a crucial component of predicting how effectively
displays and controls are designed, or how efficiently two
concurrent tasks can be done. We will describe the application
of this technique to the evaluation of human-system interfaces
for pilots and controllers.

In the NASA Virtual Airspace Modeling and Simulation
(VAMS) project, modeling and simulation methods are being
applied to evaluate the effect of changes in the operation of the
national airspace. New concepts, such as closer spacing of
aircraft on landing, or a more distributed air transportation
system, are being proposed as potential ways of increasing the
capacity and safety of civil aviation. New automation under
consideration would provide individual pilots and air traffic
controllers more information about their situation, and help
them in predicting near-future states of the airspace. VAMS is
developing the modeling and simulation infrastructure that
would allow the effect of these proposed changes to be
evaluated. Autonomous agents provide an enabling role in two
ways. First they replace humans in real-time simulations,
drastically reducing the cost of simulation. Second, agents
will be used in non-real-time simulations to evaluate the
impact of proposed changes to airspace operations. Agents
with some degree of autonomy may also come to play critical
roles in actual airspace operations. Several airspace concepts
involve advanced automation on the ground communicating
with automated systems onboard aircraft to negotiate
clearances automatically [3]. It is envisioned that human
operators will interact with this technology in a supervisory
role. Explorations of agent interaction may shed light on the
nature of communication between human and intelligent
systems.

Our agents perform the functions of aircrew or air traffic
controller in non-real-time simulations of the US national
airspace. A human-like agent must meet a set of functional
requirements that derive from the role it will play in the
simulation, and from our desire to closely match human
behavior. To simulate novel airspace concepts VAMS has
developed a new airspace simulation system, ACES [13].
Briefly, ACES is an agent-based event-driven simulation
supporting common communications protocols (e.g. .HLA-
RTI). ACES supports a simulation of a set of aircraft flying
from source to destination locations across a large section of
the US national airspace system (NAS), including aircraft-to-
aircraft and aircraft-to-ground communications. ACES models
the dynamic behavior of different aircraft types, as well as the
procedures and communications agents such as aircraft and air
traffic control. In its current build, ACES represents agents at a
level that abstracts over individual humans and human-system
interfaces. Since an important goal for us is to evaluate such
interfaces, we model the entire joint human-system in Apex,
and use the combined output to control an ACES agent.

The nature of human and agent interaction in airspace
operations depends on the role of the agent. The crew of an
aircraft acts largely as a closely-knit team, as do air traffic
controllers. For these agents we can build on existing
characterizations of teams [1]. In contrast, individual aircraft
do not have the strong common goal with respect to each other

that characterizes a team, nor are they the simple agents that
characterize swarms. Aircraft are in competition with each other
for airspace resources. Incorporating the proper incentive
structure into agents becomes important, especially true for
certain “self-separation” concepts that propose a distributed,
decentralized control, where aircraft obey rules of the road and
negotiate between themselves to resolve potential conflicts.
Under competitive pressure certain seemingly obvious rules of
the road have been shown to lead to suboptimal outcomes [6].
We build on existing “belief” representations [2] to model
these behaviors.

The nature of airspace operations dictates capabilities in an
autonomous agent needed to produce the human-like behavior
required to evaluate proposed concepts. Skilled human action
reflects the attempt to respond to environmental demands
subject to processing limitations. The characteristics of the
environments we are interested in require the following
capabilities:

• Domain knowledge that dictates when to take action, what
action to take, and how to control dynamic objects (e.g.
aircraft), including rules of conversation that dictate when
and how to communicate

• Common strategies for dealing with nominal and off-
nominal conditions

•  Multitasking capability that supports interruption, task
suspension, task resumption, and task interleaving

• A representation of “beliefs” or “expectations” about what
other agents in the simulation are doing, or likely to do
[2], including the planning of future behaviors

• Limitations in human information processing require that
the agent be capable of reflecting human resource
management. In particular, it requires the following:

•  A set of resources and a rules that determine how they
interact

• A set of parameters characterizing normal latencies and
variability

• Theory or heuristics that map resources onto activities in
the task domain

The requirements for environmental action and resource
management are well matched to the capabilities of the Apex
computational architecture, developed at NASA Ames Research
Center [8, 9]. Apex models an agent attempting to schedule its
limited resources to accomplish multiple tasks. Apex
implements a reactive plan execution mechanism [8, 9], and a
language capable of expressing a range of multitasking
functionality including interruption, suspension, and
resumption.

In the following sections we describe in detail our modeling
approach, explain how that approach can be included in the
ACES airspace simulation framework, and finally show the
progress of our modeling efforts for an air traffic control
handoff task.

2. THE MODELING APPROACH
Our approach to this has been to develop a cognitive modeling
method that allows us to compose behavior from elementary
human Cognitive, Perceptual, and Motor operators, whose
characteristics are relatively constant across domains. Key to
our success with the compositional approach has been the



development of a method for automatically scheduling these
elementary human resources, which was achieved using the
Apex computational architecture. A high-level overview of an
Apex model is shown in Figure 1.

Figure 1: The Apex modeling architecture

The modeling framework includes a Resource Architecture, an
Action Selection Architecture, and a Procedure Library. The
resource architecture defines the limited-capacity cognitive,
perceptual, and motor components as shown in Figure 1. In
actuality these are categories of resources and a running model
would generally include a more detailed specification within
each. The action selection architecture coordinates the activity
of the resources and applies knowledge in the form of
procedures. The procedure library contains the knowledge the
agent applies to perform in the target domain. All knowledge
in Apex is in the form of procedures. Information about the
world is input through perceptual processes, which have
limited capacity. Incoming information is matched against the
specifications of procedures in the procedure library. If
conditions for a procedure are detected then the Action
Selection Architecture schedules the steps of the procedure in
accordance with the constraints specified below.

As discussed earlier the model combines the CPM-GOMS
human performance model with the Apex computational
architecture, which provides the underlying simulation
framework. Apex [8, 9] is a software tool for creating, running
and analyzing simulations of intelligent agents carrying out
human-computer interaction tasks. Apex treats the problem of
modeling behavior as a problem of scheduling an agent’s
limited resources. The agent architecture incorporates a
reactive planning and execution mechanism [8, 9] with
integrated online resource scheduling and other capabilities
needed to handle multiple tasks.   Both the general capabilities
of a reactive planner and the multitask management extensions
specific to Apex have proven central in automating CPM-
GOMS models.

The reactive planner recursively decomposes high-level goals
into subgoals and primitive operators based on stored plans.

What makes the planner reactive is that it does not generate the
goal hierarchy all at once.  Instead, it waits until all
preconditions associated with a given goal are satisfied before
retrieving a plan to specify subgoals. Deferring goal
decomposition until near execution time enables the planner
to choose how to decompose (i.e. which procedure to use) with
as much situation information as possible.  This strategy i s
essential for tasks such as air traffic control where uncertainty
about future world state is high and the need for careful
deliberation, either to solve complex problems or to choose
optimally from a wide range of possible solutions, is low. The
reactive planner allows the Apex controller agent to be
interrupted by voice communications or by alerts that signal
the need for immediate action.

The process of recursively applying methods to non-primitive
goals (those that do not correspond to an operator) produces a
goal hierarchy, consistent with GOMS.  In a standard GOMS
analysis this recursion would bottom out in leaf nodes in the
task domain, such as depicted in Figure 4. Our method of
behavior composition has the task hierarchy bottom out in a
set of primitive t e m p l a t e s . These templates describe
elementary task behaviors, such as moving and clicking a
mouse, or typing a key, that occur in many contexts. Thus, by
modeling these elementary behaviors we can develop a library
of behaviors from which to construct larger behavioral
sequences. In this way, we bridge the gap between the standard
task analysis and a user model of some detail. By separating
these two elements we hope to free the designer from
specifying the cognitive architecture, and allow her to execute
an agent model from leaf nodes in the task domain.

There are two issues that arise in this compositional approach:
how templates are constructed, and how they are combined to
produce extended behavioral sequences. We first discuss
briefly how templates are constructed, then how they are
combined to model larger agent behavioral sequences.

2.1 Template Construction
In CPM-GOMS the leaf nodes of the hierarchy form a sequence
of operator-level actions composed of elementary cognitive,
perceptual, and motor activities. Under strong assumptions
about operator independence – that operators are executed in
strict sequence and that the specific nature of an operator has
no effect on the time required to execute other operators in the
sequence – the total task time would be the sum of these leaf
node operators.  These assumptions do not hold for highly
practiced sequences where the execution of adjacent operators
may overlap in time and the degree of overlap can depend on
operator order and identity.  As a result, the sum duration of
operators whose assigned individual durations are correct in
isolation will tend to predict excessive overall task duration.  

Instead, CPM-GOMS allows parallel operator execution
subject to three kinds of constraints. Logical constraints
apply when one action is required to specify or enable another
and therefore must precede it. Logical constraints may apply
between operators within a single template or across templates.
Within-template constraints must be specified in the template
definition. Since CPM-GOMS allows operators from one
template to slip back into the temporal scope of earlier
templates, making these constraints explicit and including
mechanisms to enforce them would be required to guarantee
correct behavior.

COGNITION MOTORPERCEPTION

ACTION SELECTION
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Unary resource constraints specify that when two operators
use a non-sharable, non-depletable resource (e.g. the left-
hand), they cannot be carried out concurrently.  Within a
template, operators requiring the same resource must be
explicitly sequenced.  Across templates, operators must follow
a template precedence rule such that the highest priority task
gains access to resources.

Slack exclusion constraints are restrictions on the use of
slack time by operators with specified properties.  Slack
exclusion constraints are often applied on operators
representing a cognitive action to initiate a motor response.
The rule for a cognitive initiation exclusion rule can be
defined as follows: given a set of operators A1..Am from
template ti that use resource R, operators B and C from
template tj where C uses R and B represents a cognitive action
that initiates C, and i<j, B cannot execute until all Ak are
complete.  This rule contributed to very accurate predictions in
the referenced model; however, its generality and scientific
basis are still undetermined.

2.2 Template Interleaving
The same parallelism that applies to elementary operators
within a template applies to operators across templates. Thus,
it is generally not possible to obtain accurate predictions
simply by concatenating templates. We have previously
reported [11] a method of interleaving the elements of
successive templates that provides excellent fits to observed
data. The details of this method are beyond the scope of this
paper, but in brief, interleaving of templates is accomplished
by the application of the three constraints described above. We
have successfully fit data from human-computer interaction
tasks including mouse-based automated teller simulations,
typing, and computer aided design tasks. The method i s
currently being applied to shuttle cockpit procedures, airline
cockpit procedures, and as here air traffic control operations.
Figure 2 shows the fit between observed and predicted data for
the automated teller machine task.

0

200

400

600

800

1000

1200

1400

1600

1 3 5 7 9 11 13 15

Mouse Clicks

Ti
m

e 
(m

s)

S1 99th trial
S2 94th trial
  CPM Model

Figure 2: Apex model fit for automated teller machine task

In summary, our compositional approach to simulating
behavior relies on a theory of resources to predict concurrency,
and on a software architecture to execute reactive plans.
Concurrent operator execution occurs within and across
templates. Within-template concurrency arises because

cognitive, perceptual, and motor operators call on separate,
independent resources. Between-template concurrency arises
from the interleaving of operators from different templates.
The essence of the interleaving phenomenon is that the
activities specified by a template do not use all resources all of
the time; idle time (slack) in the use of a resource by one
template’s operators represents an opportunity for operators
from a later template to “slip back” and begin execution.
Interleaving at the level of CPM-GOMS operator-level goals
corresponds to overlap in the execution of higher-level goals
– i.e. at the level of templates or classic GOMS operators – and
thus accounts for the different predictions of the CPM-GOMS
and classic GOMS approaches.

That all knowledge is represented as procedures raises the
issue of how to deal with representational issues. For example,
in air traffic control it may be necessary to deal differently
with “beliefs” than with knowledge of which one is more
certain. We have yet to deal with this issue directly. However,
Apex includes mechanisms for adjusting the priority of
procedures based on current information. It may be that an
Apex agent will hold several different beliefs and alter its
beliefs by selecting the appropriate one for the given
circumstance.

Previous Apex models have all used a simulated environment
that was internal to Apex.  In order to allow Apex models to
participate in large-scale simulations of the national airspace
system at NASA, we are integrating Apex into the ACES
simulation environment.

3. THE SIMULATION ENVIRONMENT
The simulation environment, ACES, was introduced above and
briefly described. One of the challenges in working with
external simulation environments is to synchronize the timing
of the model with the simulation. Our Apex models achieve
accurate predictions by simulating performance at a
granularity of about 50 milliseconds. It is necessary to
represent human behavior at such a fine granularity in order
for the interleaving to accurately reflect the parallelism
evidenced in performance. Because the ACES simulation i s
event driven, each agent is allowed to update its state at
whatever granularity is appropriate. However, ACES agents are
typically large-scale airspace entities, such as aircraft and air
traffic control centers. It would be inefficient to simulate the
large-scale flow of traffic at a fine granularity. Indeed, the
simulation has a default granularity of 1 second, 20 times
slower than the human performance model.

Figure 3 shows our initial attempt at accommodating this
difference. Apex will be used to model both the human agent
and the displays and controls the agent interacts with. In this
way, timing of agent actions and delays imposed by the
equipment and user interface can be simulated at high fidelity.
Communication with the ACES simulation will occur at
synchronized message passing times in accordance with ACES
protocols. This arrangement is depicted in Figure 3. This
scheme provides a natural division between the human
performance model and the ACES-level agent. ACES
incorporates objects that represent high-level agents. The
Apex agent need only transmit to its ACES counterpart those
messages of significance in the larger context. Thus, while
each keystroke of data entry into flight computers must be
simulated to predict the time, the ACES-level agent need only
be informed when the keystrokes produce some change in the



its state, such as activating a mode, or changing a control
setting.

Figure 3: Integrating Apex with ACES

Timing issues could still arise as delays in the simulation due
to Apex computations. Such delays should be the result of
Apex delays only if the requisite computations cannot be
performed within the 1-second update interval. To date,
achieving this level of performance has not been difficult. The
key constraint on Apex time is the range of tasks over which
interleaving occurs, as this defines the complexity of
arranging and rearranging the agenda. The Apex language
contains expressions that allow us to limit the scope of
interleaving

4. THE TASK
At present, ground based air traffic control installations have
responsibility for routing of aircraft and maintenance of safe
separation between aircraft. There are three principle types of
installation: terminal, TRACON, and enroute. Terminal control
handles surface operations including take-off and landing.
TRACON handles arrival and departure sectors for airports.
Enroute handles the remainder of the flight between departure
and arrival sectors. Other entities modeled in the ACES
simulation include the airline operating centers, which are run
by each airline and provide schedule and gate information to
their own aircraft, and the aircraft themselves. Previous work
has attempted to provide a more or less complete functional
analysis of TRACON [14] and enroute [5]. Those have not yet
been turned into workable computational agents. Some
progress toward a complete controller agent has begun [2], but
the controller’s task is a complex mixture of spatial,
geometric, temporal, and procedural reasoning. No software
agent has yet been able to handle more than a portion of the
entire task though progress in applying rule-based systems
has yielded agents with some capability [2, 5].

We have begun our agent development by focusing on enroute
control, following existing task analyses [5]. Figure 5 presents
a high level functional analysis of a portion of current enroute
control, taken with small modifications from [5]. Each sector i s
managed by two controllers, the radar controller (R-side) and
the radar associate controller (D-side), whose duties
complement and overlap. The R-side controller is the primary
controller in contact with aircraft. The D-side controller
assists, sharing responsibility for conflict detection and
planning, as well as performing routine housekeeping. For the
present discussion we will focus on the R-side controller
activities involved in initiating a handoff. To estimate the
nature of the interaction among the various agents in the
airspace simulation, we modeled the communications required
to accomplish a handoff, the lighter text in the section of
Figure 4.

It is apparent from Figure 4 and the earlier discussion that an
individual controller is part of a network of airspace entities.
Each individual shares responsibility for ensuring safe
operations, but those responsibilities are themselves divided.
For example, the aircrew is primarily responsible for the safety
of their aircraft, the controller for the safety of all aircraft in her
sector. In addition to the formal rules for controllers (as well as
aircrew) there exist informal practices. These informal rules
have not been exhaustively studied, but are apparent in the
behavior of controllers. They represent social contracts
between entities that have emerged with time. Because of
reciprocity, many informal rules act for the general good of all
players.  For example, controllers will try to manage the traffic
in their sector so that they do not overburden the downstream
controller to whom they hand the traffic off. This cooperative
behavior may not apply if they are busy.

More formal contracts also apply. It is understood that and
aircraft will respond relatively quickly to a command by a
controller, which they have acknowledged. This quick
response reduces controller workload. Until evidence of the
maneuver appears on the controller’s radar screen, the
controller has only the “belief” that the agent will carry out the
instruction. The maintenance of such beliefs takes memory
resources, which are reduced by reducing the time over which
they need apply. This is an important consideration since new
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datalink equipment will eliminate the vocal transmission and
acknowledgment characteristic of present practices. One of the
goals for our agents is to shed light on how new equipment
and practices affect controller interactions with aircraft and
other controllers.

The light text in Figure 4 represents more detailed functional
steps in initiating a handoff. We developed a simple model of
this procedure in Apex using observed times for the
interaction of the various agents involved [5].

Figure 4: Functional analysis of enroute control

5. PROGRESS
The model output, shown in Figure 5, highlights the
communications overhead associated with a routine sector
operation. Each colored row in Figure 5 represents a single
agent in the airspace simulation. The boxes in the top row
depict the times for the R-side controller receiving the
handoff. The second row depicts the transferring controller on
the R-side. The third row represents the aircrew response. The
final row the D-side activities on the transferring side. A key
observation is the presence of slack in the activity schedule
caused by waiting for the transfer activities and the aircrew
response. New equipment currently in field test would
eliminate this slack by allowing the controller to transfer and
receive handoffs automatically. The technology, termed

datalink, is a direct connection from ground computers to
flight computers on board the aircraft. One of the questions i s
how the new technology will impact operations. As seen
above, eliminating the waiting will reduce the slack and save
time and hopefully workload. However, the success of such
devices is often in the details of the human-computer interface.
To fully evaluate this technology it will be necessary to
develop a more detailed agent model that interacts with the
target device.

Figure 5: Timing output of Apex model of handoff transfer

The model output of Figure 5 reflects the interaction among
agents in accomplishing a task. Parameters for the model were
taken as measurements in human-in-the-loop airspace
simulations. We would like our agents to exhibit human-like
performance characteristics with a variety of interfaces and
rules that reflect changing concepts for airspace operations. In
many cases prototype equipment will not exist so such direct
measurements would not be possible. Indeed, it would be
useful if the agent could help define procedures and
information displays that would promote efficient human-
machine communication.
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